
Introduction to JSP © R.S. Kang 2002

 1 of 12

Introduction to Jackson Structured
Programming (JSP)

Lesson

1

Contents

1. Introduction
2. JSP Diagrams and Notation

2.1. Sequence
2.2. Selection
2.3. Iteration

3. Passing & returning values to and from Functions
4. JSP Recursion
5. JSP and pseudo code
6. Comparative review of JSP and traditional Flowcharting
7. Summary

1. Introduction

I remember being introduced to JSP back in 1984 whilst at College, though it was a recently
new methodology, most students found this to be fairly intuitive. I’m hoping that instructors
alike will find this to be a key tool in effectively teaching the concept of logic and design.

The Jackson Program Design Methodology, sometimes called Jackson Structured
Programming (JSP), is a method for program design and modelling. It begins with
considerations about what is known and develops a program design that becomes more
complete as the model is put through continued iterations. It is primarily based on functional
top down decomposition and can be read top-down or bottom up. It builds program design
from an incomplete model, hence termed as being a “composition type” method.

The founder of JSP, Michael Jackson developed this methodology in the early 70’s that later
emerged in industry and the academic field. By the 80’ it was found to be a de-facto in Europe
and widely taught in Colleges and Universities.

Introduction to JSP © R.S. Kang 2002

2. JSP Diagrams and Notations

A Jackson Structured Programming diagram is used to explain the inner workings of a
program. At a glance they seem similar to algorithm flowcharts, but the likeness is only
superficial.
To understand a JSP diagram you must read it properly. With a JSP diagram each step on
the same branch is performed top down - left to right.

Sequence

Sequence

A B Cn

 {Sequence}
1. process A

Wi
a p

Top Dow
2. process B
3. process C Order of execution

th JSP diagrams there are three types of “box” notations used to represent the workings of
rogram. All programs have three control structures Sequence, Selection and Iteration!
ProcedureAction/Process Selection *
Iteration

2 of 12

Introduction to JSP © R.S. Kang 2002

2.1. Sequence

Sequence

A B C

{Sequence}
1 process A
2 process B
3 process C

Example 1

CmdCal_Click

Main Process Display AnswerInitialize Variables
Num1, Num2

Input num1, num2 Answer=num1+num2

Private Sub cmdCalculate_Click()
 Dim num1 As Byte
 Dim num2 As Byte
 Dim answer As Byte
 num1 = Val(txtNum1)
 num2 = Val(txtNum2)
 answer = num1 + num2
 lblAnswer = CStr(answer)
End Sub

Alternative (Refined)
CmdCal_Click

Main Process Display AnswerInitialize Variables
Num1, Num2

User Input Answer=num1+num2

num1=txtNum1 num2=txtNum2

 3 of 12

Introduction to JSP © R.S. Kang 2002

2.2. Selection

{Selection}
1 select
1.1a when c1
1.1b process A
1.2a when c2
1.2b process B
1.3a otherwise
1.3b process C
1

Selection ?

A B

C1 C2

C

NOT C1 or C2

Example 1 : IF statement

Age > 60If Age > 60 Then
 P = True
Endif

Example 2 : IF Then..Else statement

Salary > 40k

Salary > 60k

Print Manager Salary > 100K

True F

False True

Print Director

TFalse

P=True _

T F

Print Supervisor

alse

Print CEO

rue

 If Sal>40 Then
 if Sal>60 Then
 if Sal>100 Then
 Print “CEO";
 Else
 Print”Director"
 Else
 Print "Manager"
Else
 Print "Supervisor"

4 of 12

Introduction to JSP © R.S. Kang 2002

Example 3 : CASE statement

switch(ch)
 {
 case 1: Add_Stud(); break;
 case 2: Search_ID(); break;
 case 3: Disp_All(); break;
 case 0: cout<<"Exiting Student Management System...!\n\n";exit(1);
 default: cout<<"Invalid choice made....try again!"; break;
 }

User Choice

1 2 3 0 Default (Else)

Add_Stud() Search_ID() Disp_All() "Exit System" Err

2.3. Iteration

Iteration 1

A

While c1

*

{Iteration 2}
1 repeat

1.1 process A

1 until c1

Example to model a book:

Book

Chapter *

*

Page *

Line *

While NOT End of Chapter

While not End of Book

While NOT End of Page

While NOT End of Line

 5 of 12
While NOT End of Book
 While NOT End of Chapter
 While NOT End of Page
 While NOT End of Line
 …..
 End While
 End While
 End While
 End While

Introduction to JSP © R.S. Kang 2002

3. Passing & returning values to and from Functions

Z

Sub() Sub 4Call Sub() Call Sub4(var Z),
return Z

X XW

Sub 2 Call Sub2(X) Sub 5 Call Sub5 var W,X): (
return W;

Example 1: Demonstrating calling functions with values/parameters.

Program

{Program}
1.Call SubA Sub A B C
2.While <condition>
 2.1.call SubD(X) while <condition>

 2.2.Y = call SubE(Z) Z
Sub D Sub E 2.3.F * F

2.endwhile
X R 3.C

Z

SubE
Function SubE(int Y)
 Process B
 Process C

X Call D(X)
 return R

B C Sub D Return

R

 6 of 12

Introduction to JSP © R.S. Kang 2002

Example 2: Design below demonstrates, sequence, selection and iteration based on a I/O file
design (this example closes and opens a file for each add record task)

Ex

C1

ample below opens the file at the start of the program, and closes it the end

Add Record *

Initialize Get Record

PKey

Close File

Check Record*
C2

C1 : While No More Records to ADD
C2 : While NOT EOF OR Record Found

-

NOT FOUND

Record=FOUND

 FOUND

Open File
Record=FALSE

Input Primary Key
(Pkey) If Record FOUND

Input Data
Write to fileErr

FT

Add Record
*Open File

Get Record

PKey

Close File

Check Record

C1

*
C2

C1 : While No More Records to ADD
C2 : While NOT EOF OR Record Found

-

NOT FOUND

Record=FOUND

 FOUND

Input Primary Key
(Pkey)

Record=FALSE

If Record FOUND

Input Data
Write to fileErr

FT

Main Program

7 of 12

Introduction to JSP © R.S. Kang 2002

4. JSP Recursion

A recursive routine is when a procedure calls itself. Each recursive call made allows the
problem to get closer to a solution. The Tower of Hanoi is a typical example of recursion.
JSP tackles recursion simply by introducing a double line process box that represents a call to
itself.

The example below demonstrates the 10 green bottle song (or 10 beers as the Americans
would say!) with a recursive call

Verse(Bottle)

10

Bottle >0

Bottle & Green
Bottles..." _

T F

Bottle-1 & Green
Bottles..."

Bottle >1

No Green
Bottles..."

T F

Verse(Bottle-1)

Bottle

Base Case

Recursive Step

The recursive component of a JSP object or action design is indicated by a double lined
component box. The code corresponding to this design has been included below.

main ()
{
 verse(10); // Call verse
 return 0;
}

int verse(int bottle)
{
 if (bottle > 0) // Where n is number of bottles
 {
 cout << bottle << " green bottle";
 cout << " hanging on the wall....\n\n";
 cout << "and if 1 green bottle should accidentally fall? \n";
 if (bottle > 1)
 {
 cout << "There'll be " << (bottle-1) << " green bottle";
 cout << " hanging on the wall\n";
 }
 else
 {
 cout << "There'll be no green bottles hanging on the wall\n\n";
 }
 verse(bottle-1); //Recursive call where bottle=bottle-1 (1 less bottle)
 }

 return 0;
}
8 of 12

Introduction to JSP © R.S. Kang 2002

5. JSP & Pseudo code

Generally a JSP diagram is adequate to describe a program; if more detail is required you
can easily combine JSP diagrams and pseudo code. Pseudo code could reflect process
boxes in particular where complex algorithms may be difficult to represent as JSP.

The example below uses both JSP and Pseudo code to represent the design of a simple
bubble sort program.

int main()
{
 for (loop = 0;loop < 6;loop++)
 {
 for (Scan = 0;Scan < 6;Scan++)
 {
 if (Entry[Scan] > Entry[Scan+1])
 {
 TempEntry = Entry[Scan+1];
 Entry[Scan+1] = Entry[Scan];
 Entry[Scan] = TempEntry;
 }
 }
 }
 return 0;
}

Sort Prog

Initialize Variables

 *
Loop

Main()

 *
Scan

End

SWAP

{SWAP}

TempEntry = Entry[Scan+1]
Entry[Scan+1] = Entry[Scan]
Entry[Scan] = TempEntry

Pseudo code could also be included for each process box, dependant on the application
being developed. If this is the case, JSP should still reflect an overall break down of the
problem.

 9 of 12

Introduction to JSP © R.S. Kang 2002

6. Comparative review of JSP and traditional Flowcharting

A diagrammatical comparison between traditional flowcharting and JSP methodology is
covered in this section. A snap shot picture between the designs clearly shows that JSP is
found to be simplistic, clear and avoids the fuzziness shown by the flowchart method.
The JSP methodology tends to avoid the fuzziness that can be created by too many notations
adopted by flowcharting.

Sequence: calculate the sum of two numbers

Get x,y

Start

Answer = x + y

Sele
seco

Stop

Display
Answer

Program

Get x,y Answer=x+y Display answer

 JSP Flowchart

ction: Calculate the difference of two numbers if the first is greater than the
nd, otherwise calculate the sum

Start

Program

Get x,y x>y Display answer

answer=x-y answer=x+y

Yes No

 JSP

10 of 12
Get x,y

Stop

Answer = x - y

Display
Answer

Answer = x + y

x > y ?Yes No

 Flowchart

Introduction to JSP © R.S. Kang 2002

Iteration: Draw a flowchart to show how to calculate the sum of the numbers 1 to 100

Start

Program

Num=1,Sum =1 Calculate Display sum

Sum=Sum+Num Num=Num+1

While Num<=100*

 JSP

11 of 12
Num = 1
Sum = 0

Num <= 100?

Sum=Sum + Num

Num=Num+1

Yes

Display
Sum

No

Stop

 Flowchart

Introduction to JSP © R.S. Kang 2002

7. Summary

JSP modelling does involve the emergence of input and output that eventually creates the
structure of the final design. This chapter has only focussed on how simple problems could be
broken down and, solutions designed that are later transformed into code.

This chapter concentrates on allowing students in understanding logic and how to “think
logically” prior to coding.

The application of Jackson Program Design include small-scale development of program
modules, reports, sequential file processing, and similar areas that do not involve modelling-
in-the-large. However, all types of problems can be solved using JSP, and it is a clear, robust
system for thinking about problems.

Surveys indicate JSP/JSD (Jackson Structured design) is widely recognized and used in
Europe than in the USA. JSP’s intentions have been quite clear in terms of developing
structured systems, in particular how modules are integrated to form the whole application. Its
primary implementation has close ties with SSADM (Structured Systems Analysis and Design
Methodology).

The strength of Jackson Program Design lies in its description of what a program is to do. Its
basic characteristics that give it advantages in its systematic approach include:

• Rational- based on reasonable principles, well developed and well defined: structured
programming (iteration, selection, sequence).

• Teachable- it has a well set of defined steps, it is possible to explain and show how
this system is applied and how it works.

• CONSISTENT- given a single problem for analysis, different programmers or analysts
will come up with more or less the same program design.

• SIMPLE- the method does not involve overly complex rules, cumbersome procedures
or difficult notations to remember.

• UNIVERSAL- specifications are produced that can be implemented in the language
the developer desires.

Other Resources

JAVA JSP Editor Creates C/Pascal Code from design

http://flightline.highline.edu/rkang/

OR

http://www.ida.his.se/ida/~henrike/JSP/example.chtml

 12 of 12

http://flightline.highline.edu/rkang/

